Author:
Ogunyinka Oladayo,Wright Alexander,Bolognesi Guido,Iza Felipe,Bandulasena Himiyage Chaminda Hemaka
Abstract
AbstractReactive species produced by atmospheric-pressure plasma (APP) are useful in many applications including disinfection, pretreatment, catalysis, detection and chemical synthesis. Most highly reactive species produced by plasma, such as ·OH, 1O2 and $$ {\text{O}}_{2}^{ \cdot - } $$O2·-, are short-lived; therefore, in situ generation is essential to transfer plasma products to the liquid phase efficiently. A novel microfluidic device that generates a dielectric barrier discharge (DBD) plasma at the gas–liquid interface and disperses the reactive species generated using microbubbles of ca. 200 µm in diameter has been developed and tested. As the bubble size affects the mass transfer performance of the device, the effect of operating parameters and plasma discharge on generated bubbles size has been studied. The mass transfer performance of the device was evaluated by transferring the reactive species generated to an aqueous solution containing dye and measuring percentage degradation of the dye. Monodisperse microbubbles (polydispersity index between 2 and 7%) were generated under all examined conditions, but for gas flow rate exceeding a critical value, a secondary break-up event occurred after bubble formation leading to multiple monodisperse bubble populations. The generated microbubble size increased by up to ~ 8% when the device was operated with the gas plasma in the dispersed phase compared to the case without the plasma due to thermal expansion of the feed gas. At the optimal operating conditions, initial dye concentration was reduced by ~ 60% in a single pass with a residence time of 5–10 s. This microfluidic chip has the potential to play a significant role in lab-on-a-chip devices where highly reactive species are essential for the process.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献