Higher order lubrication model between slip walls

Author:

Takeuchi ShintaroORCID,Omori TakeshiORCID,Fujii Takehiro,Kajishima Takeo

Abstract

AbstractA higher order lubrication model between slip walls is proposed for predicting the flow fields that cannot be described by the standard lubrication models based on the thin-gap approximation. The analysis shows that when considering the non-negligible pressure gradient in the surface-normal direction, the local pressure can be separated into (i) the base contribution by the modified Reynolds lubrication equation and (ii) the higher order component varying in both longitudinal and wall-normal directions, which takes the form proportional to the longitudinal derivative of the local velocity of the Couette–Poiseuille flow. For both (i) and (ii), the effect of the slip boundaries appears as the apparent displacements of the no-slip solid walls, and for (i) additional terms (to the no-slip case) also appear. The validity of the higher order slip-wall lubrication model is established by comparing the analytical prediction of the pressure with the fully resolved numerical results in a relatively wide region between a no-slip corrugated wall and a flat plate with varying slip length: the contribution of the higher order term is identified as the decreased lubrication pressure due to velocity slip. The model also successfully predicts the trend of pressure change between the varying slip case and a more realistic system with constant slip length for a channel, where the thin-gap approximation does not hold.

Funder

Japan Society for the Promotion of Science

Osaka University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3