SERS-active core-satellite nanostructures in a membrane filter-integrated microfluidic device for sensitive and continuous detection of trace molecules

Author:

Wu Li-An,Hsieh Kai-Ting,Lin Chien-Shen,Wang Yuh-Lin,Chen Yih-Fan

Abstract

AbstractWe developed a surface-enhanced Raman scattering (SERS)-active plasmonic core-satellite nanostructure and incorporated it into a membrane filter-integrated microfluidic device for continuous monitoring of molecules in solution. The core-satellite nanostructures were fabricated by immobilizing a high number density of gold nanoparticles (AuNPs) on silica beads.to create many nanogaps among the AuNPs. The sizes of the nanogaps were fine-tuned by adding a silver (Ag) shell to optimize the SERS activity. In addition, citrate molecule, the capping agent of the nanoparticles, was displaced by alkali halides. The displacement not only reduced the SERS signals of citrate but also enhanced the adsorption of target molecules. The alkali halide-treated core-satellite nanostructures were accumulated onto a membrane filter integrated into a microfluidic device, serving as a uniform and sensitive SERS substrate. By increasing the volume of the sample solution flowing through the membrane filter, we increased the number of molecules adsorbed to the nanostructures, amplifying the intensities of their characteristic Raman peaks. Our microfluidic SERS device demonstrated continuous SERS detection of malachite green at a concentration as low as 500 fM. In summary, while various core-satellite nanostructures and microfluidic SERS devices have been reported, the integration of the membrane filter-containing microfluidic device with the core-satellite nanostructures facilitated sensitive and continuous molecule detection in our study.

Funder

National Yang Ming Chiao Tung University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3