Magnetic nanodrug delivery in non-Newtonian blood flows

Author:

Fanelli Claudia,Kaouri Katerina,Phillips Timothy N.,Myers Timothy G.,Font FrancescORCID

Abstract

AbstractWith the goal of determining strategies to maximise drug delivery to a specific site in the body, we developed a mathematical model for the transport of drug nanocarriers (nanoparticles) in the bloodstream under the influence of an external magnetic field. Under the assumption of long (compared to the radius) blood vessels the Navier-Stokes equations are reduced, to a simpler model consistently with lubrication theory. Under these assumptions, analytical results are compared for Newtonian, power-law, Carreau and Ellis fluids, and these clearly demonstrate the importance of shear thinning effects when modelling blood flow. Incorporating nanoparticles and a magnetic field to the model we develop a numerical scheme and study the particle motion for different field strengths. We demonstrate the importance of the non-Newtonian behaviour: for the flow regimes investigated in this work, consistent with those in blood micro vessels, we find that the field strength needed to absorb a certain amount of particles in a non-Newtonian fluid has to be larger than the one needed in a Newtonian fluid. Specifically, for one case examined, a two times larger magnetic force had to be applied in the Ellis fluid than in the Newtonian fluid for the same number of particles to be absorbed through the vessel wall. Consequently, models based on a Newtonian fluid can drastically overestimate the effect of a magnetic field. Finally, we evaluate the particle concentration at the vessel wall and compute the evolution of the particle flux through the wall for different permeability values, as that is important when assessing the efficacy of drug delivery applications. The insights from our work bring us a step closer to successfully transferring magnetic nanoparticle drug delivery to the clinic.

Funder

Ministerio de Ciencia e Innovación

Generalitat de Catalunya

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3