Abstract
Abstract
Background
Nrf2 regulates cellular antioxidant defence in lung cells, including epithelial cells and alveolar macrophages (AM). The Nrf2/Keap-1 pathway can be modulated by activators with different modes of action; electrophilic compounds and protein–protein interaction (PPI) inhibitors.
We assessed Nrf2 and Keap-1 protein and gene levels in COPD compared to controls and the effect of Nrf2 activators on COPD AM.
Methods
Lung resected tissue from non-smokers, smokers and COPD patients were analysed for epithelial and AM expression of Nrf2 and Keap-1 by imunoshistochemistry and by qPCR in isolated AM. AM were cultured with Nrf2 activators CDDO, C4X_6665, GSK7, MMF and Sulforaphane. Expression of Nrf2 target genes NQO1, HMOX1 SOD1 and TXNRD1 and NQO1 activity were assessed.
Results
Nrf2 and Keap-1 expression was not altered in the epithelium or AM of COPD patients compared to controls. NQO1 activity was downregulated, while NQO1, HMOX1, SOD1 and TXNRD1 gene expression increased in COPD patients. All Nrf2 activators increased NQO1 activity, and NQO1, HMOX1, SOD1 and TXNRD1 expression in AMs from both COPD and smokers. The potency of C4X_6665 on NQO1 activity and regulation of Nrf2 target gene expression was higher than other compounds.
Conclusion
There is evidence of dysregulation of the Nrf2 signalling pathway in AM from COPD patients. The higher potency of the novel PPI Nrf2 compound C4X_6665 for inducing antioxidant activity and gene expression compared to electrophilic and other PPI Nrf2 activators highlights the therapeutic potential of this compound to address Nrf2 pathway dysregulation in COPD AM.
Funder
C4X Discovery Ltd
North West Lung Centre Charity and National Institute for Health Research Clinical Research Facility at Manchester University NHS Foundation Trust
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology,Immunology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献