Silymarin constrains diacetyl-prompted oxidative stress and neuroinflammation in rats: involvements of Dyn/GDNF and MAPK signaling pathway

Author:

Tabaa Manar Mohammed El,Aboalazm Hamdi M.,Shaalan Mohamed,Khedr Naglaa Fathy

Abstract

AbstractNeuroinflammation, a major component of many CNS disorders, has been suggested to be associated with diacetyl (DA) exposure. DA is commonly used as a food flavoring additive and condiment. Lately, silymarin (Sily) has shown protective and therapeutic effects on neuronal inflammation. The study aimed to explore the role of Sily in protecting and/or treating DA-induced neuroinflammation. Neuroinflammation was induced in rats by administering DA (25 mg/kg) orally. Results revealed that Sily (50 mg/kg) obviously maintained cognitive and behavioral functions, alleviated brain antioxidant status, and inhibited microglial activation. Sily enhanced IL-10, GDNF and Dyn levels, reduced IFN-γ, TNFα, and IL-1β levels, and down-regulated the MAPK pathway. Immunohistochemical investigation of EGFR and GFAP declared that Sily could conserve neurons from inflammatory damage. However, with continuing DA exposure during Sily treatment, oxidative stress and neuroinflammation were less mitigated. These findings point to a novel mechanism involving the Dyn/GDNF and MAPK pathway through which Sily might prevent and treat DA-induced neuroinflammation.

Funder

University of Sadat City

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3