High cut-off microdialysis catheters to clinically investigate cytokine changes following flap transfer

Author:

Tollan Clare JosephineORCID,MacFarlane Niall G.,MacKay Iain R.

Abstract

Abstract Background ‘Choke vessels’ are thought to dilate in the first 72 h when blood flow to an area is disrupted. This study used ‘high cut-off’ microdialysis catheters in clinical research to investigate factors mediating circulatory change within free flaps. Methods Six patients undergoing DIEP flap breast reconstruction each had three ‘high cut-off’ microdialysis catheters, with a membrane modification allowing molecules as large as 100 kDa to pass, inserted into Hartrampf zones 1, 2 and 4 to assess multiple vascular territories. Microdialysis continued for 72 h post-operatively. Samples were analysed for interleukin-6 (IL-6), tumour necrosis factor alpha (TNFα) and fibroblast growth factor basic (FGFβ). Results Three hundred and twenty-four samples were analysed for IL-6, FGFβ and TNFα totalling 915 analyses. IL-6 showed an increasing trend until 36 h post-operatively before remaining relatively constant. Overall, there was an increase (p < 0.001) over the time period from 4 to 72 h, fitting a linear trend. TNFα had a peak around 20–24 h before a gradual decrease. There was a significant linear time trend (p = 0.029) between 4 and 76 h, decreasing over the time period. FGFβ concentrations did not appear to have any overall difference in concentration with time. The concentration however appeared to oscillate about a horizontal trend line. There were no differences between the DIEP zones in concentrations of cytokines collected. Conclusion This study uses high-cut off microdialysis catheters to evaluate changes in cytokines, and requires further research to be undertaken to add to our knowledge of choke vessels and flap physiology. Level of evidence: Level IV, diagnostic study.

Funder

Canniesburn Research Charitable Trust

Publisher

Springer Science and Business Media LLC

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3