Using unlabeled data to improve classification of emotional states in human computer interaction

Author:

Schels Martin,Kächele Markus,Glodek Michael,Hrabal David,Walter Steffen,Schwenker Friedhelm

Publisher

Springer Science and Business Media LLC

Subject

Human-Computer Interaction,Signal Processing

Reference57 articles.

1. Baluja S (1999) Probabilistic modeling for face orientation discrimination: learning from labeled and unlabeled data. In: Proceedings of the 1998 conference on advances in neural information processing systems II (NIPS), pp 854–860

2. Baumert JH, Frey AW, Adt M (1995) Analysis of heart rate variability. Background, method, and possible use in anesthesia. Der Anaesth 44(10):677–686

3. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings conference on computational learning theory, pp 92–100

4. Boiten FA, Frijda NH, Wientjes CJ (1994) Emotions and respiratory patterns: review and critical analysis. Int J Psychophysiol 17(2):103–128

5. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speech Emotion Recognition based on Semi-Supervised Adversarial Variational Autoencoder;2023 IEEE 10th International Conference on Cyber Security and Cloud Computing (CSCloud)/2023 IEEE 9th International Conference on Edge Computing and Scalable Cloud (EdgeCom);2023-07

2. Semi-Supervised Learning for Multimodal Speech and Emotion Recognition;Proceedings of the 2021 International Conference on Multimodal Interaction;2021-10-18

3. Anticipating the User: Acoustic Disposition Recognition in Intelligent Interactions;Intelligent Systems Reference Library;2019

4. Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data;Proceedings of the 26th ACM international conference on Multimedia;2018-10-15

5. Leveraging Unlabeled Data for Emotion Recognition With Enhanced Collaborative Semi-Supervised Learning;IEEE Access;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3