Author:
Muñoz Hector E.,Lin Jonathan,Yeh Bonnie G.,Biswas Tridib,Di Carlo Dino
Abstract
AbstractMechanical measurements of cells can provide unique insights into cell state and disease processes. The overall mechanical properties of cells can be heavily affected by the stiffest organelle, the nucleus. However, it is challenging to fully characterize internal nuclear structures in most cell mechanical measurement platforms. Here, we demonstrate single-cell deformability measurements of whole cells and stained nuclei in a fluorescence imaging flow cytometry platform. We also introduce bending energy derived metrics as a way to normalize measurements of cytoskeletal cortex and nuclear shape changes of cells and demonstrate the utility of relative deformability distributions to characterize populations of cells. We apply the platform to measure changes in cell biophysical properties during the process of NETosis, whereby neutrophils undergo drastic nuclear restructuring. We characterize cell size, deformability, and nuclear structure changes and their correlations in thousands of neutrophils undergoing NETosis, a process implicated in development of critical disease states, such as sepsis. This platform can aid in understanding heterogeneity in deformability in cell populations and how this may be influenced by nuclear or internal structure changes.
Graphical Abstract
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献