Fluorescence imaging deformability cytometry: integrating nuclear structure with mechanical phenotyping

Author:

Muñoz Hector E.,Lin Jonathan,Yeh Bonnie G.,Biswas Tridib,Di Carlo Dino

Abstract

AbstractMechanical measurements of cells can provide unique insights into cell state and disease processes. The overall mechanical properties of cells can be heavily affected by the stiffest organelle, the nucleus. However, it is challenging to fully characterize internal nuclear structures in most cell mechanical measurement platforms. Here, we demonstrate single-cell deformability measurements of whole cells and stained nuclei in a fluorescence imaging flow cytometry platform. We also introduce bending energy derived metrics as a way to normalize measurements of cytoskeletal cortex and nuclear shape changes of cells and demonstrate the utility of relative deformability distributions to characterize populations of cells. We apply the platform to measure changes in cell biophysical properties during the process of NETosis, whereby neutrophils undergo drastic nuclear restructuring. We characterize cell size, deformability, and nuclear structure changes and their correlations in thousands of neutrophils undergoing NETosis, a process implicated in development of critical disease states, such as sepsis. This platform can aid in understanding heterogeneity in deformability in cell populations and how this may be influenced by nuclear or internal structure changes. Graphical Abstract

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3