Develop quantitative FRET (qFRET) technology as a high-throughput universal assay platform for basic quantitative biomedical and translational research and development

Author:

Liao JiayuORCID

Abstract

AbstractProtein–protein interactions and enzyme-catalyzed reactions are the fundamental processes in life, and the quantification and manipulation, kinetics determination, and ether activation or inhibition of these processes are critical for fully understanding physiological processes and discovering new medicine. Various methodologies and technologies have been developed to determine the parameters of these biological and medical processes. However, due to the extreme complexity of these processes, current methods and technologies can only determine one or a few parameters. The recent development of quantitative Förster resonance energy transfer (qFRET) methodology combined with technology aims to establish a high-throughput assay platform to determine protein interaction affinity, enzymatic kinetics, high-throughput screening, and pharmacological parameters using one assay platform. The FRET assay is widely used in biological and biomedical research in vitro and in vivo and provides high-sensitivity measurement in real time. Extensive efforts have been made to develop the FRET assay into a quantitative assay to determine protein–protein interaction affinity and enzymatic kinetics in the past. However, the progress has been challenging due to complicated FRET signal analysis and translational hurdles. The recent qFRET analysis utilizes cross-wavelength correlation coefficiency to dissect the sensitized FRET signal from the total fluorescence signal, which then is used for various biochemical and pharmacological parameter determination, such as KD, Kcat, KM, Ki, IC50, and product inhibition kinetics parameters. The qFRET-based biochemical and pharmacological parameter assays and qFRET-based screenings are conducted in 384-well plates in a high-throughput assay mode. Therefore, the qFRET assay platform can provide a universal high-throughput assay platform for future large-scale protein characterizations and therapeutics development. Graphical Abstract

Funder

NIAID

Attaisina

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3