Shear wave ultrasound elastography for estimating cartilage stiffness: implications for early detection of osteoarthritis

Author:

Georgas Elias,Rayes Adnan,Zhang Junhang,Zhou Qifa,Qin Yi-XianORCID

Abstract

AbstractCurrent osteoarthritis (OA) diagnosis relies on radiographic abnormalities found in later stages of the disease, posing a challenge to the treatment efficacy. Therefore, earlier detection of OA is essential for improving therapeutic outcomes. The aim of this study was to investigate the feasibility of shear wave ultrasound elastography (SWUE) to detect changes in cartilage mechanical properties under OA conditions ex-vivo. Bovine osteochondral units were harvested from femoral condyles and subjected to either trypsin degradation, cartilage surface roughness defect using varying degrees of sandpaper, or subchondral bone degeneration using formic acid (FA) injection. Shear waves were generated using a mechanical shaker, while a high-frequency ultrasound system operating at 18 MHz was employed to detect wave propagation along the samples. The elasticity of cartilage was estimated by the shear wave speed (SWS) through the auto-correlation method. Our results show that the estimated SWS of cartilage after 24, 48, and 72 hours of trypsin incubation significantly decreased by 37%, 43%, and 59%, respectively, compared to the control group. Surface roughness treatment using 150-grit sandpaper significantly decreased the SWS by 35% compared to the control. Samples treated with 7% FA showed a significant increase in SWS by 62%, 89%, and 53% compared to control, 1% FA, and 3% FA, respectively. Our findings demonstrate the feasibility of SWUE to differentiate the elastic properties of cartilage under different OA conditions. This study presents the potential of a noninvasive, nonionizing tool for early detection of OA, representing a significant step toward its clinical implementation. Graphical Abstract

Funder

National Space Biomedical Research Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3