Smart textiles for self-powered biomonitoring

Author:

Yin Junyi,Wang Shaolei,Di Carlo Aiden,Chang Austin,Wan Xiao,Xu Jing,Xiao Xiao,Chen JunORCID

Abstract

AbstractMerging electronics with textiles has become an emerging trend since textiles hold magnificent wearing comfort and user-friendliness compared with conventional wearable bioelectronics. Smart textiles can be effectively integrated into our daily wearing to convert on-body biomechanical, biochemical, and body heat energy into electrical signals for long-term, real-time monitoring of physiological states, showing compelling medical and economic benefits. This review summarizes the current progress in self-powered biomonitoring textiles along three pathways: biomechanical, body heat, and biochemical energy conversion. Finally, it also presents promising directions and challenges in the field, as well as insights into future development. This review aims to highlight the frontiers of smart textiles for self-powered biomonitoring, which could contribute to revolutionizing our traditional healthcare into a personalized model. Graphical Abstract Self-powered biomonitoring textiles via biomechanical, body heat, and biochemical energy conversion are discussed in this work. Platform technologies, including piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENGs), and magnetoelastic generators (MEGs) for biomechanical energy conversion, thermoelectric generators (TEGs) for boy heat energy conversion, and biofuel cells (BFCs) for biochemical energy conversion, are systematically introduced and discussed in a textile form. Working in a self-powered manner with greatly improved wearing comfort, the smart biomonitoring textiles pave a compelling road to personalized healthcare.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3