Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies

Author:

She David T.ORCID,Nai Mui HoonORCID,Lim Chwee TeckORCID

Abstract

AbstractThis review examines the significant role of Atomic Force Microscopy (AFM) in neurobiological research and its emerging clinical applications in diagnosing neurological disorders and central nervous system (CNS) tumours. AFM, known for its nanometre-scale resolution and piconewton-scale force sensitivity, offers ground breaking insights into the biomechanical properties of brain cells and tissues and their interactions within their microenvironment. This review delves into the application of AFM in non-clinical settings, where it characterizes molecular, cellular, and tissue-level aspects of neurological disorders in experimental models. This includes studying ion channel distribution, neuron excitability in genetic disorders, and axonal resistance to mechanical injury. In the clinical context, this article emphasizes AFM’s potential in early detection and monitoring of neurodegenerative diseases, such as Alzheimer's Disease (AD), Parkinson's Disease (PD) and amyotrophic lateral sclerosis (ALS), through biomarker characterization in biofluids such as cerebrospinal fluid and blood. It also examines the use of AFM in enhancing the grading and treatment of CNS tumours by assessing their stiffness, providing a more detailed analysis than traditional histopathological methods. Despite its promise, this review acknowledges challenges in integrating AFM into clinical practice, such as sample heterogeneity and data analysis complexity, and discusses emerging solutions such as machine learning and neural networks to overcome these hurdles. These advancements, combined with commercial nanotechnology platforms, herald a new era in personalized treatment strategies for management, treatment and diagnosis of neurological disorders. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3