Higher cerebrospinal fluid biomarkers of neuronal injury in HIV-associated neurocognitive impairment

Author:

Ellis Ronald J.ORCID,Chenna Ahmed,Petropoulos Christos J.,Lie Yolanda,Curanovic Dusica,Crescini Melanie,Winslow John,Sundermann Erin,Tang Bin,Letendre Scott L.

Abstract

AbstractWe evaluated whether biomarkers of age-related neuronal injury and amyloid metabolism are associated with neurocognitive impairment (NCI) in people with and without HIV (PWH, PWoH). This was a cross-sectional study of virally suppressed PWH and PWoH. NCI was assessed using a validated test battery; global deficit scores (GDS) quantified overall performance. Biomarkers in cerebrospinal fluid (CSF) were quantified by immunoassay: neurofilament light (NFL), total Tau (tTau), phosphorylated Tau 181 (pTau181), amyloid beta (Aβ)42, and Aβ40. Factor analysis was used to reduce biomarker dimensionality. Participants were 256 virally suppressed PWH and 42 PWoH, 20.2% female, 17.1% Black, 7.1% Hispanic, 60.2% non-Hispanic White, and 15.6% other race/ethnicities, mean (SD) age 56.7 (6.45) years. Among PWH, the best regression model for CSF showed that higher tTau (β = 0.723, p = 3.79e-5) together with lower pTau181 (β = −0.510, p = 0.0236) best-predicted poor neurocognitive performance. In univariable analysis, only higher tTau was significantly correlated with poor neurocognitive performance (tTau r = 0.214, p = 0.0006; pTau181 r = 0.00248, p = 0.969). Among PWoH, no CSF biomarkers were significantly associated with worse NCI. Predicted residual error sum of squares (PRESS) analysis showed no evidence of overfitting. Poorer neurocognitive performance in aging PWH was associated with higher CSF tTau, a marker of age-related neuronal injury, but not with biomarkers of amyloid metabolism. The findings suggest that HIV might interact with age-related neurodegeneration to contribute to cognitive decline in PWH.

Funder

National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Virology,Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3