1. Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F. G. Higher Transcendental functions, Vol.1, McGraw-Hill, Neqw York-Toronto -London, 1953.
2. Hayek, N., A study of the differential equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $ xy {\prime \prime }+(\nu+1) {\prime }+y=0 $ and its applications. (Spanish) Collect Math. 18 (1966-67), no. 1–2, 57–174.
3. Schwartz A. L., An inversion theorem for Hankel transforms, Proc. Amer. Math. Soc. 22 (1969), no. 3, 713–717.
4. Lee W. Y., On Schwartz’s Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal 6 (1975), no.2, 427–432.
5. Dube L. S. and Pandey J. N., On the Hankel transform of distributions, Tohôku Math. J. (2) 27 (1975), no.3, 337–354.