Managing the Complexity of Dialogues in Context: A Data-Driven Discovery Method for Dialectical Reply Structures

Author:

Yaskorska-Shah Olena

Abstract

AbstractCurrent formal dialectical models postulate normative rules that enable discussants to conduct dialogical interactions without committing fallacies. Though the rules for conducting a dialogue are supposed to apply to interactions between actual arguers, they are without exception theoretically motivated. This creates a gap between model and reality, because dialogue participants typically leave important content-related elements implicit. Therefore, analysts cannot readily relate normative rules to actual debates in ways that will be empirically confirmable. This paper details a new, data-driven method for describing discussants’ actual reply structures, wherein corpus studies serve to acknowledge the complexity of natural argumentation (itself understood as a function of context). Rather than refer exclusively to propositional content as an indicator of arguing pro/contra a given claim, the proposed approach to dialogue structure tracks the sequence of dialogical moves itself. This arguably improves the applicability of theoretical dialectical models to empirical data, and thus advances the study of dialogue systems.

Funder

Warsaw University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Linguistics and Language,Philosophy

Reference38 articles.

1. Bench-Capon, T.J. 1998. Specification and implementation of Toulmin dialogue game. In Proceedings of JURIX 1998 Dec, pp. 5–20.

2. Black, E., and A. Hunter. 2012. Executable logic for dialogical argumentation. Proceedings of ECAI 15–20.

3. Bowden, K.K., Oraby, S., Misra, A., Wu, J., Lukin, S., and Walker, M., 2019. Data-driven dialogue systems for social agents. In Advanced social interaction with agents. Springer, pp. 53–56.

4. Budzynska, K., and Reed, C., 2011. Whence inference? University of Dundee Technical Report.

5. Budzynska, K., M. Janier, J. Kang, C Reed, P. Saint-Dizier, M. Stede, and O. Yaskorska, 2014. Towards argument mining from dialogue, Frontiers in artificial intelligence and applications. Proceedings of the 5th international conference on computational models of argument (COMMA 2014), IOS Press, vol. 266, pp. 185–196.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3