Modelling antecedent soil hydrological conditions to improve the prediction of landslide susceptibility in typhoon-prone regions

Author:

Abancó ClàudiaORCID,Asurza Flavio AlexanderORCID,Medina VicenteORCID,Hürlimann MarcelORCID,Bennett Georgina L.ORCID

Abstract

AbstractMost regional landslide susceptibility models do not consider the evolving soil hydrological conditions leading up to a multiple occurrence regional landslide event. This results in inaccurate predictions due to the non-linear behaviour of the terrain. To address this, we have developed a simple and efficient model that incorporates the mid-term evolution of soil hydrological conditions. The model combines a water balance model and a geotechnical model based on infinite slope theory. The analysis of 561 high-intensity rainfall events in a typhoon-prone region of the Philippines revealed that the percolation of water during the 5-month wet season is crucial in determining landslide susceptibility. Consequently, high-intensity rainfall events at the start of the wet season are less likely to trigger landslides, while later events are more hazardous. We analysed the change in landslide susceptibility during the 2018 rainy season by comparing the probability of failure (PoF) before and after three high-intensity rainfall events (July, August and September). Only the event in September caused a significant increase in the probability of failure (PoF). The model showed an accuracy of 0.63, with stable cells better represented than unstable cells. The antecedent hydrological conditions on the lower soil layers are responsible for changes in landslide susceptibility. Our findings support the hypothesis that new approaches to developing hydro-meteorological thresholds for landslide early warning systems should be evaluated, especially in regions with strong seasonality.

Funder

Newton Fund

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3