InterpolatiON of InSAR Time series for the dEtection of ground deforMatiOn eVEnts (ONtheMOVE): application to slow-moving landslides

Author:

Pedretti LauraORCID,Bordoni Massimiliano,Vivaldi Valerio,Figini Silvia,Parnigoni Matteo,Grossi Alessandra,Lanteri Luca,Tararbra Mauro,Negro Nicoletta,Meisina Claudia

Abstract

AbstractThe aim of this work is to develop an innovative methodology to analyse the time series (TS) of interferometric satellite data. TS are important tools for the ground displacement monitoring, mostly in areas in which in situ instruments are scarce. The proposed methodology allows to classify the trend of TS in three classes (uncorrelated, linear, non-linear) and to obtain the parameters of non-linear time series to characterise the magnitude and timing of changes of ground instabilities. These parameters are the beginning and end of the non-linear deformation break(s), the length of the event(s) in days, and the quantification of the cumulative displacement in mm. The methodology was tested on two Sentinel-1 datasets (2014–2020) covering the Alpine and Apennine sectors of the Piemonte region, an area prone to slow-moving slope instabilities. The results were validated at the basin scale (Pellice-Chisone and Piota basin) and at a local scale (Brenvetto, Champlas du Col and Casaleggio Boiro landslides) comparing with in situ monitoring system measurements, possible triggering factors (rainfall, snow) and already-collected events of the territory. The good correlation of the results has proven that the methodology can be a useful tool to local and regional authorities for risk planning and management of the area, also in terms of near real-time monitoring of the territory both at local and regional scale.

Funder

Arpa Piemonte

Regione Piemonte

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3