Comparative analysis of conventional and machine learning techniques for rainfall threshold evaluation under complex geological conditions

Author:

Dal Seno N.ORCID,Evangelista D.,Piccolomini E.,Berti M.

Abstract

AbstractThis research focuses on the essential task of defining rainfall thresholds in regions with complex geological features, specifically at a regional scale. It examines a variety of methodologies, from traditional empirical-statistical methods to cutting-edge machine learning (ML) techniques, for establishing these thresholds. The Emilia-Romagna region in Italy, known for its intricate geological structure and prevalence of weak rocks that often lead to large and deep-seated landslides, serves as the study area. The region’s complex interplay between rainfall and landslide incidences poses a significant challenge in accurately determining rainfall thresholds. The effectiveness of ML methods is compared against conventional empirical-statistical approaches, evaluating factors such as prediction accuracy, model complexity, and the interpretability of results for use by regional landslide warning system operators. The findings indicate that machine learning techniques have an edge over traditional methods, yielding higher performance scores and fewer false positives. Nevertheless, these advancements are modest when considering the increased complexity of ML methods and the incorporation of additional rainfall parameters. This underlines the continued need for improvements in data quality and volume. The study stresses the importance of enhancing data collection and analysis techniques, especially in an era where advanced AI tools are increasingly available, to improve the accuracy of predicting rainfall thresholds for effective landslide warning systems.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3