Modelling discontinuity control on the development of Hell’s Mouth landslide

Author:

He LingfengORCID,Coggan John,Stead Doug,Francioni Mirko,Eyre Matthew

Abstract

AbstractThis paper focuses on numerical modelling and back analysis of the Hell’s Mouth landslide to provide improved understanding of the evolution of a section of the north coast of Cornwall, UK. Discontinuity control is highlighted through the formation of a ‘zawn’ or inlet, the occurrence of two successive landslides and evidence of ongoing instability through opening of tension cracks behind the cliff top. Several integrated remote sensing (RS) techniques have been utilised for data acquisition to characterise the slope geometry, landslide features and tension crack extent and development. In view of the structural control on the rock slope failures, a 3D distinct element method (DEM) code incorporating a discrete fracture network and rigid blocks has been adopted for the stability analysis. The onset and opening of tension cracks behind the modelled slope failure zones has also been studied by analysing the displacements of two adjoining landslide blocks, between which, a joint-related tension crack developed. In addition, a sensitivity analysis has been undertaken to provide further insight into the influence of key discontinuity parameters (i.e. dip, dip direction, persistence and friction angle) on the stability of this section of the coastline. Numerical modelling and field observations indicate that block removal and preferential erosion along a fault resulted in the formation of the inlet. The development of the inlet provides daylighting conditions for discontinuities exposed on the inlet slope wall, triggering the initial landslide which occurred on 23rd September 2011. Numerical modelling, and evidence from a video of the initial landslide, suggests that the cliff instability is characterised by a combination of planar sliding, wedge sliding and toppling modes of failure controlled by the discrete fracture network geometry.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3