Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria

Author:

Lima PedroORCID,Steger Stefan,Glade Thomas

Abstract

AbstractThe reliability of input data to be used within statistically based landslide susceptibility models usually determines the quality of the resulting maps. For very large territories, landslide susceptibility assessments are commonly built upon spatially incomplete and positionally inaccurate landslide information. The unavailability of flawless input data is contrasted by the need to identify landslide-prone terrain at such spatial scales. Instead of simply ignoring errors in the landslide data, we argue that modellers have to explicitly adopt their modelling design to avoid misleading results. This study examined different modelling strategies to reduce undesirable effects of error-prone landslide inventory data, namely systematic spatial incompleteness and positional inaccuracies. For this purpose, the Austrian territory with its abundant but heterogeneous landslide data was selected as a study site. Conventional modelling practices were compared with alternative modelling designs to elucidate whether an active counterbalancing of flawed landslide information can improve the modelling results. In this context, we compared widely applied logistic regression with an approach that allows minimizing the effects of heterogeneously complete landslide information (i.e. mixed-effects logistic regression). The challenge of positionally inaccurate landslide samples was tackled by elaborating and comparing the models for different terrain representations, namely grid cells, and slope units. The results showed that conventional logistic regression tended to reproduce incompleteness inherent in landslide training data in case the underlying model relied on explanatory variables directly related to the data bias. The adoption of a mixed-effects modelling approach appeared to reduce these undesired effects and led to geomorphologically more coherent spatial predictions. As a consequence of their larger spatial extent, the slope unit–based models were able to better cope with positional inaccuracies of the landslide data compared to their grid-based equals. The presented research demonstrates that in the context of very large area susceptibility modelling (i) ignoring flaws in available landslide data can lead to geomorphically incoherent results despite an apparent high statistical performance and that (ii) landslide data imperfections can actively be diminished by adjusting the research design according to the respective input data imperfections.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) - CNPq

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3