Landslide detection in the Himalayas using machine learning algorithms and U-Net

Author:

Meena Sansar RajORCID,Soares Lucas Pedrosa,Grohmann Carlos H.,van Westen Cees,Bhuyan Kushanav,Singh Ramesh P.,Floris Mario,Catani Filippo

Abstract

AbstractEvent-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed of five optical bands from the RapidEye satellite imagery. Dataset-2 is composed of the RapidEye optical data, and ALOS-PALSAR derived topographical data. We used a small dataset consisting of 239 samples acquired from several training zones and one testing zone to evaluate our models’ performance using the fully convolutional U-Net model, Support Vector Machines (SVM), K-Nearest Neighbor, and the Random Forest (RF). We created thirty-two different maps to evaluate and understand the implications of different sample patch sizes and their effect on the accuracy of landslide detection in the study area. The results were then compared against the manually interpreted inventory compiled using fieldwork and visual interpretation of the RapidEye satellite image. We used accuracy assessment metrics such as F1-score, Precision, Recall, and Mathews Correlation Coefficient (MCC). In the context of the Nepali Himalayas, employing RapidEye images and machine learning models, a viable patch size was investigated. The U-Net model trained with 128 × 128 pixel patch size yields the best MCC results (76.59%) with the dataset-1. The added information from the digital elevation model benefited the overall detection of landslides. However, it does not improve the model’s overall accuracy but helps differentiate human settlement areas and river sand bars. In this study, the U-Net achieved slightly better results than other machine learning approaches. Although it can depend on architecture of the U-Net model and the complexity of the geographical features in the imagery, the U-Net model is still preliminary in the domain of landslide detection. There is very little literature available related to the use of U-Net for landslide detection. This study is one of the first efforts of using U-Net for landslide detection in the Himalayas. Nevertheless, U-Net has the potential to improve further automated landslide detection in the future for varied topographical and geomorphological scenes.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3