Emulator-based global sensitivity analysis for flow-like landslide run-out models

Author:

Zhao HuORCID,Amann Florian,Kowalski Julia

Abstract

AbstractLandslide run-out modeling involves various uncertainties originating from model input data. It is therefore desirable to assess the model’s sensitivity to these uncertain inputs. A global sensitivity analysis that is capable of exploring the entire input space and accounts for all interactions often remains limited due to computational challenges resulting from a large number of necessary model runs. We address this research gap by integrating Gaussian process emulation into landslide run-out modeling and apply it to the open-source simulation tool r.avaflow. The feasibility and efficiency of our approach is illustrated based on the 2017 Bondo landslide event. The sensitivity of aggregated model outputs, such as the angle of reach, impact area, and spatially resolved maximum flow height and velocity, to the dry-Coulomb friction coefficient, turbulent friction coefficient, and the release volume is studied. The results of first-order effects are consistent with previous results of common one-at-a-time sensitivity analyses. In addition to that, our approach allows us to rigorously investigate interactions. Strong interactions are detected on the margins of the flow path where the expectation and variation of maximum flow height and velocity are small. The interactions generally become weak with an increasing variation of maximum flow height and velocity. Besides, there are stronger interactions between the two friction coefficients than between the release volume and each friction coefficient. In the future, it is promising to extend the approach for other computationally expensive tasks like uncertainty quantification, model calibration, and smart early warning.

Funder

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3