Evaluation of failure of slopes with shaking-induced cracks in response to rainfall

Author:

Xu JiaweiORCID,Ueda Kyohei,Uzuoka Ryosuke

Abstract

AbstractCentrifuge model tests on slopes subject to shaking and rainfall have been performed to examine the response of slopes with shaking-induced cracks to subsequent rainfall and evaluate the corresponding landslide-triggering mechanisms. The failure pattern of the slope subject to shaking and then rainfall was found different from that of the slope subject to only rainfall. When shaking caused cracks on the slope shoulder and rupture line below, the mobilized soil slid along the slip surface that extended to the rupture line, the main crack became the crown of the undisturbed ground once the slope was subject to a subsequent rain event, and the progression of the landslide was related to the rainfall intensity. During the landslide caused by light rainfall, the main scarp kept exposing itself in the vertically downward direction while the ground behind the main crack in the crack-containing slope remained undisturbed. The detrimental effect of cracks on soil displacement was more evident when the slope was exposed to heavy post-shaking rainfall, resulting in a rapid and massive landslide. Additionally, the volume of displaced material of the landslide, the main scarp area on the upper edge, and the zone of accumulation were larger in the crack-containing slope subject to heavy rainfall, in comparison with those in the crack-free slope. The deformation pattern of slopes with shaking-induced cracks during rainfall was closely related to rainfall intensity and the factor of safety provided a preliminary estimation of slope stability during rainfall. Moreover, even when subjected to the same rainfall, the slopes with antecedent shaking-induced cracks displayed different levels of deformation. The slope that experienced larger shaking had greater deformation under the following rainfall, and the shaking-induced slope deformation also controlled the slip surface location. Finally, the velocity of rainfall-induced landslide could be greatly influenced by the prior shaking event alone. Despite being under light rainfall, the slope that has encountered intense previous shaking exhibited an instant landslide.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3