4D electrical resistivity to monitor unstable slopes in mountainous tropical regions: an example from Munnar, India

Author:

Watlet ArnaudORCID,Thirugnanam Hemalatha,Singh Balmukund,Kumar M. Nitin,Brahmanandan Deepak,Inauen Cornelia,Swift Russell,Meldrum Phil,Uhlemann Sebastian,Wilkinson Paul,Chambers Jonathan,Ramesh Maneesha Vinodini

Abstract

Abstract The number of large landslides in India has risen in the recent years, due to an increased occurrence of extreme monsoon rainfall events. There is an urgent need to improve our understanding of moisture-induced landslide dynamics, which vary both spatially and temporally. Geophysical methods provide integrated tools to monitor subsurface hydrological processes in unstable slopes at high spatial resolution. They are complementary to more conventional approaches using networks of point sensors, which can provide high temporal resolution information but are severely limited in terms of spatial resolution. Here, we present and discuss data from an electrical resistivity tomography monitoring system—called PRIME—deployed at the Amrita Landslide Early Warning System (Amrita-LEWS) site located in Munnar in the Western Ghats (Kerala, India). The system monitors changes in electrical resistivity in the subsurface of a landslide-prone slope that directly threatens a local community. The monitoring system provides a 4D resistivity model informing on the moisture dynamics in the subsurface of the slope. Results from a 10-month period spanning from pre-monsoon to the end of the monsoon season 2019 are presented and discussed with regard to the spatial variation of soil moisture. The temporal changes in resistivity within the slope are further investigated through the use of time-series clustering and compared to weather and subsurface pore water pressure data. This study sheds new light on the hydrological processes occurring in the shallow subsurface during the monsoon and potentially leading to slope failure. This geophysical approach aims at better understanding and forecasting slope failure to reduce the risk for the local community, thereby providing a powerful tool to be included in local landslide early warning systems.

Funder

British Geological Survey NC-ODA

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3