Recharge response and kinematics of an unusual earthflow in Liechtenstein

Author:

Aaron JordanORCID,Loew Simon,Forrer Markus

Abstract

AbstractUnderstanding landslide behavior over medium and long timescales is crucial for predicting landslide hazard and constructing accurate landscape evolution models. The behavior of landslides in soil that undergo periodic displacements, termed earthflows or compound soil slides, is especially difficult to forecast at these timescales. This is because velocities can increase by orders of magnitude over annual to decadal timescales, due to processes such as changing recharge conditions, erosion of the landslide toe, and retrogression of the landslide head. In this paper, we provide a detailed analysis of the Schlucher landslide, an unusual earthflow that is perched above the village of Malbun, Liechtenstein. This landslide had been displacing by 10 to 20 cm/year until 2015, when displacements on the order of 2 m/year occurred from 2016 to 2018. These large displacements damaged landslide mitigation measures, caused numerous surface deformation features, and threatened the local population downstream of the earthflow. This landslide has an unusually long monitoring record, with accurate displacement and climatic data available since 1983. We analyze this nearly 40-year monitoring time series to estimate recharge from snowmelt and rainfall, and its correlation with displacement. We also analyze recently collected, high-resolution surface and subsurface data in order to understand landslide response to recharge, landslide kinematics through time, and catastrophic failure potential. We find that interannual displacements can be explained with variations in recharge; however, periodic surges with recurrence times of tens of years must be explained by other mechanisms. In particular, recharge into the landslide during the recent acceleration (2016 to 2018) was not anomalously high. Instead, we argue that loss of internal strength is responsible for this recent acceleration period, and that this mechanism should be considered when forecasting the surge potential for certain earthflows and soil slides.

Funder

Abteilung Naturgefahren, Amt für Bevölkerungsschutz (ABS), Liechtensteinische Landesverwaltung

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3