The age and potential causes of the giant Green Lake Landslide, Fiordland, New Zealand

Author:

Eaves Shaun R.ORCID,McColl Samuel T.,Tielidze Levan G.,Norton Kevin P.,Hopkins Jenni L.,Hidy Alan J.

Abstract

AbstractLandslide deposits preserved in the geological record afford opportunities to better inform hillslope and seismic hazard and risk models, particularly in regions where observational records are short. In the Southern Alps of New Zealand, small coseismic landslides are frequent, but the geological record preserves several instances of more substantial (> 1 km3) but infrequent mass failures. With an estimated volume of 27 km3, the giant Green Lake Landslide represents one of the largest subaerial landslides on Earth. Previous work has suggested this deep-seated mass movement was most likely triggered by high-intensity seismic shaking, but that local structural weakness and/or glacial debuttressing may help to explain the anomalously large failure volume. Resolving the potential contribution of the latter is important given predictions concerning alpine deglaciation in the coming decades to centuries. Key to resolution are secure chronologies of landslide emplacement and past glacier change. Here we present in situ cosmogenic 10Be exposure ages from the Green Lake Landslide that suggest an emplacement age of 15.5 ± 0.7 ka. Recent work shows that glacial retreat in the region was underway by 19 ka, indicating that the Green Lake Landslide was emplaced 3–4 kyr after the onset of glacier retreat. Given the geometry of the former confining valley glacier, we expect that the deglaciation-landslide age gap is closer to the upper end of this estimate. If correct, this conclusion places greater weight on the roles of local geological structure and/or a great earthquake as factors contributing to the exceptionally large volume of this event.

Funder

British Society for Geomorphology

Crown Research Institutes

U.S. Department of Energy

Victoria University of Wellington

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3