Bayesian active learning for parameter calibration of landslide run-out models

Author:

Zhao HuORCID,Kowalski Julia

Abstract

AbstractLandslide run-out modeling is a powerful model-based decision support tool for landslide hazard assessment and mitigation. Most landslide run-out models contain parameters that cannot be directly measured but rely on back-analysis of past landslide events. As field data on past landslide events come with a certain measurement error, the community developed probabilistic calibration techniques. However, probabilistic parameter calibration of landslide run-out models is often hindered by high computational costs resulting from the long run time of a single simulation and the large number of required model runs. To address this computational challenge, this work proposes an efficient probabilistic parameter calibration method by integrating landslide run-out modeling, Bayesian inference, Gaussian process emulation, and active learning. Here, we present an extensive synthetic case study. The results show that our new method can reduce the number of necessary simulation runs from thousands to a few hundreds owing to Gaussian process emulation and active learning. It is therefore expected to advance the current practice of parameter calibration of landslide run-out models.

Funder

China Scholarship Council

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3