Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization

Author:

Segoni SamueleORCID,Pappafico Giulio,Luti Tania,Catani Filippo

Abstract

AbstractThe literature about landslide susceptibility mapping is rich of works focusing on improving or comparing the algorithms used for the modeling, but to our knowledge, a sensitivity analysis on the use of geological information has never been performed, and a standard method to input geological maps into susceptibility assessments has never been established. This point is crucial, especially when working on wide and complex areas, in which a detailed geological map needs to be reclassified according to more general criteria. In a study area in Italy, we tested different configurations of a random forest–based landslide susceptibility model, accounting for geological information with the use of lithologic, chronologic, structural, paleogeographic, and genetic units. Different susceptibility maps were obtained, and a validation procedure based on AUC (area under receiver-operator characteristic curve) and OOBE (out of bag error) allowed us to get to some conclusions that could be of help for in future landslide susceptibility assessments. Different parameters can be derived from a detailed geological map by aggregating the mapped elements into broader units, and the results of the susceptibility assessment are very sensitive to these geology-derived parameters; thus, it is of paramount importance to understand properly the nature and the meaning of the information provided by geology-related maps before using them in susceptibility assessment. Regarding the model configurations making use of only one parameter, the best results were obtained using the genetic approach, while lithology, which is commonly used in the current literature, was ranked only second. However, in our case study, the best prediction was obtained when all the geological parameters were used together. Geological maps provide a very complex and multifaceted information; in wide and complex area, this information cannot be represented by a single parameter: more geology-based parameters can perform better than one, because each of them can account for specific features connected to landslide predisposition.

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3