Abstract
AbstractThe cloning of plasmids can be time-consuming or expensive. Yet, cloning is a prerequisite for many standard experiments for the functional analysis of genes, including the generation of deletion mutants and the localization of gene products. Here, we provide Golden Gate vectors for fast and easy cloning of gene fusion as well as gene deletion vectors applicable to diverse fungi. In Golden Gate cloning, restriction and ligation occur simultaneously in a one-pot reaction. Our vector set contains recognition sites for the commonly used type IIS restriction endonuclease BsaI. We generated plasmids for C- as well as N-terminal tagging with GFP, mRFP and 3xFLAG. For gene deletion, we provide five different donor vectors for selection marker cassettes. These include standard cassettes for hygromycin B, nourseothricin and phleomycin resistance genes as well as FLP/FRT-based marker recycling cassettes for hygromycin B and nourseothricin resistance genes. To make cloning most feasible, we provide robust protocols, namely (1) an overview of cloning procedures described in this paper, (2) specific Golden Gate reaction protocols and (3) standard primers for cloning and sequencing of plasmids and generation of deletion cassettes by PCR and split-marker PCR. We show that our vector set is applicable for the biotechnologically relevant Penicillium chrysogenum and the developmental model system Sordaria macrospora. We thus expect these vectors to be beneficial for other fungi as well. Finally, the vectors can easily be adapted to organisms beyond the kingdom fungi.
Funder
Deutsche Forschungsgemeinschaft
Projekt DEAL
Publisher
Springer Science and Business Media LLC
Subject
Genetics,General Medicine
Reference76 articles.
1. Agmon N, Mitchell LA, Cai Y, Ikushima S, Chuang J, Zheng A, Choi WJ, Martin JA, Caravelli K, Stracquadanio G, Boeke JD (2015) Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. ACS Synth Biol 4:853–859
2. Becker K, Beer C, Freitag M, Kück U (2015) Genome-wide identification of target genes of a mating-type alpha-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 96:1002–1022
3. Becker K, Ziemons S, Lentz K, Freitag M, Kück U (2016) Genome-wide chromatin immunoprecipitation sequencing analysis of the Penicillium chrysogenum velvet protein PcVelA identifies methyltransferase PcLlmA as a novel downstream regulator of fungal development. Sphere 1:e00149-e1116
4. Blank-Landeshammer B, Teichert I, Märker R, Nowrousian M, Kück U, Sickmann A (2019) Combination of Proteogenomics with peptide de novo sequencing identifies new genes and hidden posttranscriptional modifications. MBio 10:e02367-e12319
5. Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献