Author:
Lou Shuo,Lyu Bosai,Zhou Xianliang,Shen Peiyue,Chen Jiajun,Shi Zhiwen
Abstract
AbstractGraphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.
Funder
the National Natural Science Foundation of China
the National Key R&D Program of China
the open research fund of Songshan Lake Materials Laboratory
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献