Controllable phase transition of two-dimensional ferromagnetic chromium telluride thin films grown by molecular beam epitaxy

Author:

Huang Haili,Shen Jinbo,Chen Jiayi,Shen Qia,Lin Gaoting,Zhu Zhen,Wu Jiangtao,Ma Jie,Yang Hao,Liu Xiaoxue,Liu Liang,Guan DandanORCID,Wang Shiyong,Li Yaoyi,Liu Canhua,Zheng Hao,Lu Yunhao,Jia Jinfeng

Abstract

AbstractTwo-dimensional (2D) Cr(1+δ)Te2 materials exhibit strong magnetic ordering and high Curie temperatures, making them attractive for various applications. It is crucial to achieve controllable synthesis for their successful integration into device technologies. In this study, we present the synthesis of phase-controllable 2D Cr(1+δ)Te2 films on the Si (111) substrate via molecular beam epitaxy. The composition and phase transition of the as-grown Cr(1+δ)Te2 films are characterized by using in-situ reflection high-energy electron diffraction, scanning tunneling microscopy, ex-situ X-ray photoelectron spectroscopy, X-ray diffraction, and theoretical calculations. At low growth temperatures, by carefully adjusting the film thickness from 2 to more than 3 layers, we achieve precise control over the phase of Cr(1+δ)Te2, from CrTe2 to Cr intercalated Cr2Te3. At a relatively elevated growth temperature, it is demonstrated that the Cr(1+δ)Te2 phase is independent of the film thickness, only Cr2Te3 forms and its growth mode is thickness-dependent. These phase transitions at low growth temperatures and growth mode changes at elevated growth temperatures are attributed to interfacial effects and the phase stability of Cr(1+δ)Te2 compounds. Additionally, we utilize scanning tunneling spectroscopy and computations to gain insights into the electronic properties of Cr2Te3. The magnetic measurements reveal that the 30-nm Cr2Te3 film exhibits ferromagnetic behavior with a Curie temperature of about 180 K. Our work offers a robust method for the controllable growth of high-quality 2D Cr(1+δ)Te2 films on Si substrates, providing an ideal platform for investigating their intrinsic properties and advancing the development of 2D magnet-based spintronics devices.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Strategic Priority Research Program of Chinese Academy of Sciences

Science and Technology Commission of Shanghai Municipality

Innovation program for Quantum Science and Technology

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3