3D Scan of Hardness Imprints for the Non-destructive In-Situ Structural Assessment of Operated Metal Components

Author:

Bolzon Gabriella,Talassi Marco

Abstract

AbstractThe structural integrity of operated components can be assessed by non-destructive mechanical tests performed in-situ with portable instruments. Particularly promising in this context are small scale hardness tests supplemented by the mapping of the residual imprints left on metal surfaces. The data thus collected represent the input of inverse analysis procedures, which determine the material characteristics and their evolution over time. The reliability of these estimates depends on the accuracy of the geometry scans and on the robustness of the data filtering and interpretation methodologies. The objective of the present work is to evaluate the accuracy of the 3D reconstruction of the residual deformation produced on metals by hardness tests performed at a few hundred N load. The geometry data are acquired by portable optical microscopes with variable focal distance. The imperfections introduced by the imaging system, which may not be optimized for all ambient conditions when used in automatic mode, are analysed. Representative examples of the output produced by the scanning tool are examined, focusing attention on the experimental disturbances typical of onsite applications. Proper orthogonal decomposition and data reduction techniques are applied to the information returned by the instrumentation. The essential features of the collected datasets are extracted and the main noise is removed. The results of this investigation show that the accuracy achievable with the considered equipment and regularization procedures can support the development of reliable diagnostic analyses of metal components in existing structures and infrastructures.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3