Abstract
AbstractExtensional edge waves propagate along the edges of plates, with low attenuation in the propagation direction and amplitude decreasing rapidly (within one or two wavelengths) in the direction perpendicular to the plate edge. This makes them an ideal candidate for inspecting the edges of plate-like structures. Here, finite-element models and experiments are used to investigate the propagation and scattering of extensional edge waves in composite plates and application to damage detection is demonstrated. Piezoceramic transducers attached to the edge of a 4-mm-thick carbon-fibre-reinforced polymer (CFRP) plate were used to excite 140-kHz edge waves and damage detection demonstrated using two experimental configurations: pitch-catch and two-transducer pulse-echo. Damage due to edge-on impacts of 5 J and 10 J were detected in both configurations. A mass-addition damage model was used to investigate the effect of damage location. Detection was specific to damage within 33 mm (1.5 wavelengths) of the plate edge with propagation unaffected by features beyond that distance. The time of arrival of reflected signals in pulse-echo mode was accurately predicted using the edge-wave group velocity indicating that this configuration can be used for locating damage on edges. The localisation of edge waves means that they can specifically detect damage at the edges of structures, and attenuation measurements indicate that their useful propagation distance is large (5.5 m).
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献