Improved Tafel-Based Potentiostatic Approach for Corrosion Rate Monitoring of Reinforcing Steel

Author:

Ramón José Enrique,Martínez Isabel,Gandía-Romero José Manuel,Soto Juan

Abstract

AbstractPotential step voltammetry (PSV) was introduced in earlier works as an advantageous alternative to traditional methods for measuring corrosion rate in reinforced concrete. The present study aims to improve PSV to maximize its applicability in corrosion rate monitoring, that is, beyond the narrowly-defined steel–concrete systems in which was initially validated. It was therefore identified necessary to address the most suitable PSV pulse amplitudes to accurately obtain the Tafel lines and, therefore, corrosion rate in steel-mortar systems with well-differentiated ohmic drop. PSV findings were compared to reference methods, i.e. Tafel intersection and linear polarization resistance. As a novelty, we propose a procedure to improve the reliability of the PSV-determined Tafel lines, which is based on three protocols (P1, P2 and P3). P1 consists of a specific pulse sequence to accurately characterize the morphology of the polarization curve without disturbing the system. P2 consists of two short pulses for determining the ohmic drop compensation factor. Finally, P3 consists of a simple calculation procedure to accurately adjust the PSV pulse amplitudes (∆V) to the steel–concrete system assessed, thus obviating the need for preset values and, therefore, ensuring accurate corrosion rate results. The procedure proposed is intended to improve PSV with a view to its consolidation as a reliable tool for the unsupervised monitoring of real structures.

Funder

Ministerio de Ciencia e Innovación

Universitat Politècnica de València

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3