Infrared Thermal Imaging-Based Turbine Blade Crack Classification Using Deep Learning

Author:

Jaeger Benedict E.,Schmid Simon,Grosse Christian U.,Gögelein Anian,Elischberger Frederik

Abstract

AbstractNon-destructive testing is widely applied for the detection and identification of defects in turbine blades of modern aircraft engines. Cracks in turbine blades can affect the turbine performance and pose a risk to safety and service life. For Original Equipment Manufacturers it is, therefore, essential to be able to identify all defects. Heat flow thermography offers, compared to the often used penetrant testing, the potential to improve the detection of defects in turbine blades and is contact-free, reproducible, quick to apply, and can be automated. With induction (heat flow) thermography, it is even possible to detect cracks that lie below the surface and therefore are not externally visible. However, manual inspection of thermography images is very time-consuming. By automating the image classification procedure with a deep learning technique, the speed and accuracy of the classification can be improved over a manually performed classification. The development objective of this AI application is expected to support and assist the highly skilled and experienced inspection specialists in the medium term. Our solution is based on convolutional neural networks. Several challenges of the AI training process, including data imbalance, a small dataset, and extremely small cracks in large images are addressed.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Reference35 articles.

1. Panizza, A., Stefanek, S.T., Melacci, S., Veneri, G., Gori, M.: Learning to identify drilling defects in turbine blades with single stage detectors. Università degli Studi di Siena, In: Conference: Machine Learning for Engineering Modeling, Simulation, and Design Workshop at Neural Information Processing Systems (2020)

2. Schlobohm, J., Bruchwald, O., Frckowiak, W., Li, Y., Kaestner, M., Poesch, A.: Advanced characterization techniques for turbine blade wear and damage. Proc. CIRP 59, 83–88 (2017). https://doi.org/10.1016/j.procir.2016.09.005

3. Reimche, W., Bach, F.-W., Boehm, V., Bruchwald, O., Frackowiak, W.: Nachweis von lokalen Schaedigungen an Hochleistungsbauteilen mit Hochfrequenz Wirbelstromtechniken und Induktions-Thermografie. In: DACH-Jahrestagung 2021 in Graz (2012)

4. Vrana, J., Goldammer, M.: Induction and conduction thermography: from the basics to application. In: DGZfP Thermographie-Kolloquium 2017 in Berlin (2017)

5. Vrana, J.: Grundlagen und Anwendungen der aktiven Thermographie mit elektromagnetischer Anregung. Induktions- und Konduktionsthermographie. Universitaet des Saarlandes, Saarbruecken, Dissertation (2008)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3