Correlation of Acoustic Emission with Fractography in Bending of Glass–Epoxy Composites

Author:

Panek Maciej,Blazewicz Stanislaw,Konsztowicz Krzysztof J.ORCID

Abstract

AbstractDamage processes in glass fiber reinforced plastic composites have been examined extensively by many analytical and experimental methods, including acoustic emission. While damage phenomena in mezo- and macro-scale are well described, the subtle mechanisms in micro-scale are still under discussion. The goal of this work was to apply the acoustic emission to examine damage initiation in fiber reinforced epoxy resin composites with different continuous glass-fiber architectures. Basic lay-ups were used: unidirectional, cross-ply and angle-ply, each with varying fiber volume content in epoxy matrix. Detection of fine micro-cracks was possible owing to merging the mechanical monotonic and step-load tests in 4-point bending with acoustic emission monitoring and detailed scanning electron microscopy observations. Clear images of macroscopically undamaged samples after interruption of step-loading cycles revealed the initiation of micro-cracks by debonding of fiber-matrix interfaces, in agreement with acoustic emission signal analyses, featuring use of historic index and rise time/amplitude ratio.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3