Reduced Training Data for Laser Ultrasound Signal Interpretation by Neural Networks

Author:

Rus JanezORCID,Fleury RomainORCID

Abstract

AbstractThe performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens with known, unchangeable defect properties, which are usually complicated to fabricate. It consist of a shape memory polymer foil with temperature-dependent Young’s modulus and ultrasound attenuation. This open a possibility to generate a reconfigurable defect by projecting a heating laser in the form of a short line on the specimen surface. Ultrasound is generated by a laser pulse at one fixed position and detected by a laser vibrometer at another fixed position for 64 different defect positions and 3 different configurations of the specimen. The obtained diversified datasets are used to optimize the neural network architecture for the interpretation of ultrasound signals. We study the performance of the model in cases of reduced and dissimilar training datasets. In our first study, we classify the specimen configurations with the defect position being the disturbing parameter. The model shows high performance on a dataset of signals obtained at all the defect positions, even if trained on a completely different dataset containing signals obtained at only few defect positions. In our second study, we perform precise defect localization. The model becomes robust to the changes in the specimen configuration when a reduced dataset, containing signals obtained at two different specimen configurations, is used for the training process. This work highlights the potential of the demonstrated machine learning algorithm for industrial quality control. High-volume products (simulated by a reconfigurable specimen in our work) can be rapidly tested on the production line using this single-point and contact-free laser ultrasonic method.

Funder

Ecole Polytechnique Fédérale de Lausanne

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3