X-ray 3D Fiber Orientation Tomography via Alternating Optimization of Scattering Coefficients and Directions

Author:

Mori Tomoki,Ohtake Yutaka,Yatagawa Tatsuya,Kido Kazuhiro,Tsuboi Yasunori

Abstract

AbstractThe X-ray Talbot–Lau interferometer (TLI) has been introduced as a device to measure the X-ray interference using an ordinary X-ray source rather than coherent X-ray sources. For nondestructive testing, the advantage of TLI is its capability to obtain darkfield images, where fibers in fiber-reinforced plastics can be distinguished from the matrix. From darkfield images, 3D tomographic reconstruction techniques have been investigated to visualize the distribution of fiber orientations. However, previous approaches assume that X-ray scattering occurs only along the predefined scattering directions that are shared within the entire volume of a test sample. In contrast, a novel technique that we introduce in this paper optimizes the predominant scattering directions independently at each voxel location. The proposed method employs an alternating optimization scheme, where it first calculates the scattering intensities along the scattering directions and then updates these scattering directions, accordingly. Owing to this alternative optimization scheme, our method demonstrates promising performance, particularly when the predominant scattering directions are indeterminate. This advantage of our proposed technique is validated with the sample made of carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP). For these samples, reference fiber orientations are determined in advance using micro-focus CT scanning. To our knowledge, we are the first to optimize both the scattering intensity and scattering directions in reconstructing fiber orientations in industrial-purpose darkfield tomography. The findings presented in this paper potentially contribute to advancing applications in industrial nondestructive testing.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3