Finite Element Modelling of a Reflection Differential Split-D Eddy Current Probe Scanning Surface Notches

Author:

Mohseni EhsanORCID,França Demartonne Ramos,Viens Martin,Xie Wen Fang,Xu Baoguang

Abstract

AbstractDifferential eddy current probes are commonly used to detect shallow surface cracks in conductive materials. In recent years, a growing number of research works on their numerical modelling was conducted since the development of analytical or semi-analytical models for such a sensor may be prone to intractable complications. In this paper finite element modelling (FEM) has been employed to simulate the interaction of a reflection differential split-D probe with surface electrical discharge machined (EDM) notches in 3-dimensional (3-D) half-space. In order to attain a better insight into the correct setup of the FEM parameters, a simple multi-turn cylindrical absolute coil has also been modelled. The outcome generated through the simulated scan of this absolute coil over a surface notch in aluminum is validated with existing experimental impedance data taken from the literature. Parameters contributing to reliable FEM simulation results, such as maximum mesh size, mesh distribution, the extent of the surrounding air domain and conductivity of the air are investigated for the 3-D modelling of both absolute and differential probes. This study shows that the simulation results on a commercial reflection differential split-D surface pencil probe closely estimate the experimental measurements of the probe’s impedance variations as it scans three EDM notches having different depths in aluminum. The simulation results, generated by Comsol Multiphysics FEM package (COMSOL I, COMSOL multiphysics reference manual, version 5.3, COMSOL AB, 2018, www.comsol.com), for the cases of absolute and differential probes are checked for their extent of validity.

Funder

Natural Sciences and Engineering Research Council of Canada

Consortium de Recherche et d'Innovation en Aérospatiale au Québec

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3