An Autonomous Technique for Multi Class Weld Imperfections Detection and Classification by Support Vector Machine
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials
Link
https://link.springer.com/content/pdf/10.1007/s10921-021-00801-w.pdf
Reference28 articles.
1. Malarvel, M., Singh, H.: An autonomous technique for weld defects detection and classification using multi-class support vector machine in X-ray. Optik (2021). https://doi.org/10.1016/j.ijleo.2021.166342
2. Yang, L., Jiang, H.: Weld defect classification in X-ray images using unified deep neural network with multi-level features. J. Intell. Manuf. (2021). https://doi.org/10.1007/s10845-020-01581-2
3. Patil, R., Reddy, Y.: Multi-class weld defect detection and classification by support vector machine and artificial neural network. Smart Innov. Sys. Tech. (2021). https://doi.org/10.1007/978-981-15-9829-6_33
4. Kumar, G.S., Natarajan, U., Ananthan, S.: Vision inspection system for the identification and classification of defects in MIG welding joints. Int J. Adv. Manu. Tech. (2014). https://doi.org/10.1007/s00170-011-3770-z
5. Patil, R., Reddy, Y.: Weld imperfection classification by texture features extraction and local binary pattern. Smart Innov. Sys. Tech. (2021). https://doi.org/10.1007/978-981-15-9829-6_28
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A machine learning-assisted nondestructive testing method based on time-domain wave signals;International Journal of Rock Mechanics and Mining Sciences;2024-05
2. LoHi-WELD: A Novel Industrial Dataset for Weld Defect Detection and Classification, a Deep Learning Study, and Future Perspectives;IEEE Access;2024
3. Identification of weld sub-surface defects by radiographic images using texture features;E3S Web of Conferences;2024
4. Developing a DSS for Enhancing Weldment Defect Detection, Classification, and Remediation Using HDR Images and Adaptive MDCBNet Neural Network;Journal of Nondestructive Evaluation;2023-12-19
5. Application of a new multi-binary classification strategy in the Weld Defects Images;2023 IEEE International Workshop on Mechatronic Systems Supervision (IW_MSS);2023-11-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3