Gangue grouting filling in subsequent space of coal green mining: methodology and case study

Author:

Yu Kunpeng,Ma Liqiang,Ngo Ichhuy,Zhai Jiangtao,Xu Yujun,Zhao Zhiyang,Wang Hui,Wang Dangliang

Abstract

AbstractUnderground backfilling stands out as a crucial technological strategy for the eco-friendly and effective management of solid waste in mining operations. However, existing backfilling techniques have led to increased production processes at the working face, resulting in a reduction in coal extraction efficiency. Addressing the temporal and spatial interference between mine solid waste backfilling and coal mining is essential. To overcome this challenge, this study introduces a novel post-mining spatial gangue slurry backfilling method. Radar detection was employed to ascertain the typical characteristics of the subsequent space collapse roof shape. Stress monitoring and compaction experiments were conducted to establish the relationship between stress and the bulking coefficient of the overlying rock mass, identifying subsequent spatial void structure characteristics. The development of a CO2 mineralized coal-based solid waste filling material, utilizing conventional low-calcium fly ash under normal temperature and pressure conditions, was presented. This paper provides a comprehensive understanding of the post-mining spatial gangue slurry backfilling method, outlines the spatial layout approach for the corresponding system, and analyzes research challenges associated with gangue slurry backfilling materials and the technology of slurry injection borehole layout. The research aims to innovate an efficient underground disposal model for gangue, contributing to the refinement of the technical system for the comprehensive disposal and utilization of gangue.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3