Abstract
AbstractMethane contamination of drinking water resources is one of the major concerns associated with unconventional gas development. This study assesses the potential contamination of shallow groundwater via methane migration from a leaky natural gas well through overburden rocks, following hydraulic fracturing. A two-dimensional, two-phase, two-component numerical model is employed to simulate methane and brine upward migration toward shallow groundwater in a generic sedimentary basin. A sensitivity analysis is conducted to examine the influence of methane solubility, capillary pressure–saturation relationship parameters and residual water saturation of overburden rocks, gas leakage rate from the well, tilted formations, and low-permeability sediments (i.e., claystones) on the transport of fluids. Results show that the presence of lithological barriers is the most important factor controlling the temporal–spatial distribution of methane in the subsurface and the arrival time to shallow groundwater. A pulse of high leakage rate is required for early manifestation of methane in groundwater wells. Simulations reveal that the presence of tilted features could further explain fast-growing methane contamination and extensive lateral spreading reported in field studies.
Funder
Horizon 2020
Georg-August-Universität Göttingen
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献