Application of geophysical techniques for shallow groundwater investigation using 1D-lateral constrained and 2D inversions in Ras Gara area, southwestern Sinai, Egypt

Author:

Genedi Mohamed A.ORCID,Youssef Mohamed A. S.ORCID

Abstract

AbstractThere is an urgent need for greater water resources to support sustainable development in Ras Gara area of southwestern Sinai. Determining the water-bearing zones of the shallow Quaternary aquifer of the Araba Formation in the study region is therefore the main objective of the research. This will be done by using a variety of geophysical techniques, such as DC resistivity sounding and shallow seismic refraction surveys. Using the Schlumberger array (max. AB = 1200 m), the DC data were gathered at 27 VES locations along five primary profiles. At the same locations, 27 spreads totaling 115 m in length of seismic data were also performed. One-dimensional laterally constrained (1D-LCI) inversion is only applied to the DC data in order to generate a best-fit model, whereas 2D inversion is applied to other datasets. The area is divided up into five geo-electrical layers based on the results of 1D-LCI inversion of DC data, and the aquifer is classified into fresh (third layer) and saline bearing-zones (fourth layer). The resistivity values of the fresh-zone range from 8.7 to 26.7 Ω.m, with only low values (5–7.5 Ω.m) found at some VES sites, while the resistivity values of the saline-zone range between 0.9 and 3 Ω.m, except for (14.4 Ω.m) at VES-04. At depths of (2.4–15.6 m) and (8.7–28.5 m) for the fresh and saline zones, respectively. In this region, the shallow low resistive (about 10–100 Ω.m) and intermediate high conductive (< 10 Ω.m) layers of the 2D-DC inverted model represent the fresh and saline zones of the aquifer, respectively. The basement rocks were represented by a deep, extremely high resistive layer that can reach 40,000 Ω.m. Three subsurface layers are identified from the results of the 2D inversion of seismic data (VP1 = 400–1100 m.s−1, VP2 = 1200–1900 m.s−1 and VP3 = 2400–5400 m.s−1). The saturated zone of this aquifer is represented by the second layer (depth, 3.7–20.5 m). The basement rocks are also reflected in the last layer of high velocity. The inversion results and the previously available hydro-geological map data show a good degree of concordance. In the eastern portion of the study area, additional water wells could be drilled for additional water resources.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3