Characterization of groundwater aquifers using hydrogeophysical and hydrogeochemical methods in the eastern Nile River area, Khartoum State, Sudan

Author:

Mohammed Musaab A. A.,Szabó Norbert P.,Szűcs Péter

Abstract

AbstractThe primary goals of this research are to detect the spatial variation of the hydrogeological characteristics and evaluate the groundwater quality in the eastern Nile River, Khartoum state, Sudan, using geophysical and hydrochemical methods. Thirteen Vertical electrical soundings (VES), using Schlumberger configuration, were measured along three profiles to characterize the groundwater aquifer. VES findings denoted that the study area comprises two hydraulically connected aquifers. The upper aquifer of sand has an average thickness of 50 m, and the lower aquifer is composed of sandstone of a thickness of up to 300 m. The results of VES inversion were further used to measure aquifer characteristics, including transverse resistance, longitudinal conductance, hydraulic conductivity, and transmissivity. The detected average values of these parameters were 6690 Ωm2, 1.4 Ω−1, 264 m2/d and 4 m/day, respectively. In addition, regression analysis was performed to suggest local relationships for estimating aquifer characteristics within the study area. On the other hand, total longitudinal conductance was used to predict the protective strength of the hydrogeological columns, ranging from 1.7 to 5.8 Ω−1; as a result, the protective capacity of the aquifer ranged from good to very good, suggesting potable water quality. This result was subsequently confirmed by the groundwater quality index (GWQI) model. Eleven physiochemical parameters analyzed for nine boreholes were used in GWQI estimation to assess groundwater quality in the study area. The primary analysis of the hydrochemical parameters indicated that almost all parameters are below permissible limits prescribed by the World Health Organization (WHO). The computed GWQI varies between 34.8 and 148, and the majority of groundwater samples, precisely 55.5%, are good water types, while 22.2% of the samples are in an excellent quality state. This research concluded that the groundwater aquifer in the study area is ideal for groundwater exploitation. However, applying a detailed geophysical and hydrochemical survey is recommended to reduce the uncertainty of the resulting models.

Funder

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3