Comparing shallow landslide susceptibility maps in Northeastern Türkiye (Beşikdüzü, Trabzon): a multivariate statistical, machine learning, and physical data-based analysis

Author:

Tezel Kübra,Akgün Aykut

Abstract

AbstractThis study endeavors to assess and compare the efficacy of various modeling approaches, including statistical, machine learning, and physical-based models, in the creation of shallow landslide susceptibility maps within the Besikduzu district of Trabzon province, situated in the Black Sea Region of Türkiye. The landslide inventory data, spanning from 2000 to 2018, was acquired through meticulous field surveys and analysis of Google Earth satellite imagery. Key topographic and geologic input parameters, such as slope, aspect, topographic wetness index, stream power index, plan and profile curvature, and geologic units, were extracted from a high-resolution 10 m spatial DEM (Digital Elevation Model) and a 1:25,000 scaled digital geology map, respectively. Additionally, soil unit weight and shear strength parameters, critical for the physical-based model, were determined through field samples. To evaluate landslide susceptibility, logistic regression, random forest, and Shalstab were employed as the chosen methods. The accuracy of susceptibility maps generated by each method was assessed using the area under the curve method, yielding impressive values of 0.99 for the random forest model, 0.97 for the logistic regression model, and 0.93 for the Shalstab model. These results underscore the robust performance of all three methods, suggesting their applicability for generating shallow landslide susceptibility maps not only in the Black Sea Region but also in analogous areas with similar geological characteristics.

Funder

Karadeniz Teknik Üniversitesi

Karadeniz Technical University

Publisher

Springer Science and Business Media LLC

Reference111 articles.

1. Adnan Ikram R M, Khan I, Moayedi H, Ahmadi Dehrashid A, Elkhrachy I, Nguyen Le B (2023) Novel evolutionary-optimized neural network for predicting landslide susceptibility. In: Environment development and sustainability, pp 1–33

2. Akbaş B, Akdeniz N, Aksay A, Altun İ E, Balcı V, Bilginer E, Bilgiç T, Duru M, Ercan T, Gedik İ, Günay Y, Güven İ H, Hakyemez H Y, Konak N, Papak İ, Pehlivan Ş, Sevin M, Şenel M, Tarhan N, Turhan N, Türkecan A, Ulu Ü, Uğuz M F, Yurtsever A et al (2011) 1:1 250 000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara Türkiye

3. Akçalı E (2011) Heyelan Yağış İlişkisi Analizi ve Modellemesi; Trabzon İli Örneği, Ph.D. dissertation of Sakarya Üniversitesi Turkey, 213 pp (in Turkish)

4. Akçalı E, Arman H (2013) Yağış Eşiği Bazlı Heyelan Erken Uyarı Sistem Önerisi: Trabzon İli Örneği. İMO Teknik Dergi 396:6307–6332

5. Akgun A, Bulut F (2007) GIS-based Landslide Susceptibility for Arsin- Yomra (Trabzon, North Türkiye) Region. Environ Geol 51:1377–1387. https://doi.org/10.1007/s00254-006-0435-6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3