Geochemical modeling of CO2 injection and gypsum precipitation at the Ketzin CO2 storage site

Author:

Jang EunseonORCID,Wiese Bernd,Pilz Peter,Fischer Sebastian,Schmidt-Hattenberger Cornelia

Abstract

AbstractGypsum crystals are found at the well perforation of observation well Ktzi 202 of the test site for CO2 storage at Ketzin, Germany. XRD analysis confirms pure gypsum. Fluid samples before and after CO2 injection are analyzed. Geochemical modeling is conducted to identify the mechanisms that lead to gypsum formation. The modeling is carried out with PHREEQC and Pitzer database due to the high salinity of up to 5 mol per kg water. Due to their significantly higher reactivity compared to other minerals like silicates, calcite, dolomite, magnesite, gypsum, anhydrite, and halite are considered as primary mineral phases for matching the observed brine compositions in our simulations. Calcite, dolomite, and gypsum are close to saturation before and after CO2 injection. Dolomite shows the highest reactivity and mainly contributes to buffering the brine pH that initially decreased due to CO2 injection. The contribution of calcite to the pH-buffering is only minor. Gypsum and anhydrite are no geochemically active minerals before injection. After CO2 injection, gypsum precipitation may occur by two mechanisms: (i) dissociation of CO2 decreases activity of water and, therefore, increases the saturation of all minerals and (ii) dolomite dissolution due to pH-buffering releases Ca2+ ions into solution and shifts the mass action to gypsum. Gypsum precipitation decreases with increasing temperature but increases with increasing partial CO2 pressure. Our calculations show that calcium sulfate precipitation increases by a factor of 5 to a depth of 2000 m when Ketzin pressure and temperature are extrapolated. In general, gypsum precipitation constitutes a potential clogging hazard during CO2 storage and could negatively impact safe site operation. In the presented Ketzin example, this threat is only minor since the total amount of gypsum precipitation is relatively small.

Funder

H2020 Energy

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3