Predicting long-term displacements of deep tunnels using an artificial neural network optimized by sand cat swarm optimization with Chebyshev map
Author:
Funder
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s12665-024-11539-9.pdf
Reference82 articles.
1. Adoko AC, Jiao YY, Wu L, Wang H, Wang ZH (2013) Predicting tunnel displacement using multivariate adaptive regression spline and artificial neural network. Tunn Undergr Space Technol 38:368–376
2. Armaghani DJ, Mohamad ET, Narayanasamy MS, Narita N, Yagiz S (2017a) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29–43
3. Armaghani DJ, Shoib RSNSBR, Faizi K, Rashid ASA (2017b) Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput Appl 28:391–405
4. Arora K, Gutierrez M, Hedayat A, Cruz EC (2021) Time-dependent behavior of the tunnels in squeezing ground: an experimental study. Rock Mech Rock Eng 54:1755–1777
5. Bardhan A, Kardani N, GuhaRay A, Burman A, Samui P, Zhang Y (2021) Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment. J Rock Mech Geotech Eng 13(6):1398–1412
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An analytical–numerical method for the hydraulic–mechanical coupling analysis of time-dependent behavior of pressurized tunnels: Impact of an excavation damaged zone;Computers and Geotechnics;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3