The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060

Author:

Xie Yachen,Hou Zhengmeng,Liu Hejuan,Cao Cheng,Qi JiaguoORCID

Abstract

AbstractThe global warming induced by the emission of greenhouse gases, especially the carbon dioxide, has become the global climate and environmental issues. China has been working in the CO2 emission reduction and carbon sinks with the purpose of becoming the carbon-neutral country by 2060. The CO2 capture, utilization and storage (CCUS) technologies and the reforestation technology represented by the Conversion of Cropland to Forestland Program (CCFP) have great potential for sinking CO2 emission. However, the trade-off among CCFP, CCS/CCUS and Water-Energy-Food (WEF) nexus are not well evaluated. In this paper, the remote-sensing data are collected and used to evaluate the sustainability of CCFP by analyzing the variation of land use and land cover (LULC), crop production, etc. The results show that 13.29% of the cropland in 2001 vanished and converted to grassland (8.3%), mosaic cropland (3%) and urban land (0.98%) in 2019, demonstrating that the CCFP is successful in both WEF nexus and carbon sink. The total crop production has increased around 50% between 2001 and 2019, implying that the CCFP will not lead to the food risk during the conversion of croplands into other types of land in China. A sustainable implementation of CCFP and other environmental Payments for Ecosystem Services (PES) policies in 2019–2060 could reach an estimated total growth of 7.462 billion m3 in comparison of that in 2018 and the total plantation forest stock of about 10.852 billion m3 in 2060, with a corresponding minimum CO2 sink of 2.90 billion tons in 2060. The estimated peak of net equivalent CO2 emissions before 2030 is about 11.0 billion tons and could not be reduced to zero by 2060 without the large-scale application of the CCS/CCUS technologies as geological sequestration of CO2. Besides, the application of CCS/CCUS can be beneficial for WEF, e.g., through replacing the water by CO2 during energy production, especially in the shale gas production in the regions with high water risks in China. In one word, CCS/CCUS and CCFP are two decided pathways of carbon sequestration and should be systematically applied to achieve China’s carbon neutrality by 2060.

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3