Geologic controls on groundwater salinity reversal in North Coles Levee Oil Field, southern San Joaquin Valley, California, USA

Author:

Flowers Michael D.,Shimabukuro David H.ORCID,Stephens Michael J.ORCID,Warden John G.ORCID,Gillespie Janice M.ORCID,Chang WillORCID

Abstract

AbstractThis paper documents a reversal in the groundwater salinity depth gradient in the North Coles Levee Oil Field in the San Joaquin Valley, California. Salinity, measured in mg/L, was mapped with water quality data from groundwater and oil and gas wells and salinity estimated from oil and gas well borehole geophysical logs using Archie's equation. The resulting three-dimensional salinity volume shows groundwater salinity increasing with depth through the Tulare and San Joaquin Formations to about 50,000 mg/L at 1100 m depth, then decreasing to 10,000–31,000 mg/L in the Etchegoin Formation at 1400 m depth. The high salinity zone occurs near the base of the San Joaquin Formation in sand lenses in shales that have been interpreted as representing a mudflat environment. The groundwater and produced water geochemistry show formation waters lie on the seawater dilution line, indicating the salinity structure is largely the result of dilution or evaporation of seawater and not due to water–rock interactions. Instead, changing depositional environments linked to decreasing sea level may be responsible for variably saline water at or near the time of deposition, leading to a salinity reversal preserved in connate waters. The steepness of the salinity reversal varies laterally, possibly due to post-depositional freshwater recharge allowed by thick sands, alternatively, by a change in connate water composition due to a lateral facies change present at the time of deposition. These results illustrate geologic and paleogeographic processes that drive the vertical salinity structure of groundwater in shallow alluvial basins.

Funder

U.S. Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3